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Why do we study it?

Dynamics: importance in requlating the
heat and water exchange at all the
spatial scales

Chemistry: controlling the oxidizing
capacity of the atmosphere



The broader perspective
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Larger land-use modification affecting
dynamics and chemistry
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Complexity of dynamics: interaction of
spatial scales and physical processes
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Exchange free troposphere
and boundary layer
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Breaking down the complexity of
this system to study

First the individual components

Second the interaction between
the physical/chemical processes




How sensitive is the atmospheric
compound diurnal variability to
boundary layer dynamics?

Study of the diurnal variability of
isoprene and related compounds

Observational/modelling
in the Amazonian region




Method

Available observations, but the
observational evidence is most of the
times far from complete

Design modeling tools with different
degrees of complexity and detail



Two modelling tools:

Large-eddy simulation (DALES)

Explicitly resolving the most relevant
turbulent scales of the CBL

Mixed-layer theory (conceptual model)

Compounds are well mixed, but there
is a specific freatment of entrainment:
boundary layer growth and exchange FT-ABL



Designing a conceptual model
(mixed-layer theory in CBL)

-Reproduce the essential features of
the diurnal boundary layer development
and evolution of the thermodynamic
variables and atmospheric compounds

-Prescribing initial and surface conditions
(although it is possible to couple it to
a soil-vegetation model)



Pros:

- Reproduce adequately clear boundary layers
- Conceptuality and simplicity

- Enable us to study space range variability

- Close to the boundary-layer schemes
implemented in large scale models

Cons.

-Limitations in cloudy boundary layers or surface
heterogeneity

-Absence of gradients near surface and
entrainment zone
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Numerical experiments:
large-eddy simulation and mixed-layer model

Dynamics
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How do measurements,
DALES and MXL model compare?

Boundary layer height growth (dynamics)

Temporal evolution isoprene and MVK
(chemistry and dynamics)

Vertical profiles isoprene
(chemistry and dynamics)



Boundary layer height evolution compared
to observations (wind profiler)
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ISO (ppb)

Isoprene and MVK diurnal variation
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Vertical profiles LES and MXL at 12 UTC
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Numerical experiments allows us to do
sensitivity analysis and determine
uncertainties due to boundary layer
development and isoprene conditions

Role of entrainment versus surface

Isoprene initial conditions in the free
troposphere (nocturnal diurnal conditions)
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Very few experimental evidence
isoprene vertical profiles
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Sensitivity to entrainment:
Three different initial isoprene and MVK
profiles at the night-day transition

Lower ISO and MVK Same ISO and MVK  Higher ISO and MVK
in the residual layer in RL and ABL in residual layer




Instantaneous vertical cross section ISO
taken in the mid-morning (LES)
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Is the surface emission more important
than the FT-ABL exchange?
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Sensitivity to surface fluxes:
Three different initial emission flux for
ISsoprene
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Sensitivity to surface emission
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In concluding:

Challenging coupling of physical, chemistry
and biological processes to understand
the dynamics and chemistry in the
Amazonian region

Important of the atmospheric boundary
layer as a buffer region between the
surface and the free troposphere conditions



